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A three-step system calibration procedure with error
compensation for 3D shape measurement
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System calibration, which usually involves complicated and time-consuming procedures, is crucial for any
three-dimensional (3D) shape measurement system based on vision. A novel improved method is proposed
for accurate calibration of such a measurement system. The system accuracy is improved with considering
the nonlinear measurement error created by the difference between the system model and real measurement
environment. We use Levenberg-Marquardt optimization algorithm to compensate the error and get a
good result. The improved method has a 50% improvement of re-projection accuracy compared with our
previous method. The measurement accuracy is maintained well within 1.5% of the overall measurement
depth range.
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Optical non-contact three-dimensional (3D) shape mea-
surement techniques based on computer vision are
used in a lot of applications[1]. Some common tech-
niques include stereo-vision[2], laser scanning[3], struc-
tured light[4], interferometry[5], and so on. Among all
these techniques, structured light based techniques are
increasingly used due to their excellent characteristics.
The key to accurate measurement of the 3D shape is
the accurate calibration of the system parameters[6].
There have already been many calibration methods which
mostly focus on the distortion and aberration[7−10]. As
we know, a good system performance is not the sim-
ple accumulation of various components’ performances.
The measurement results are affected by many factors,
such as system model, operating environment, and so on.
Therefore, we propose an overall system calibration algo-
rithm which considers the measurement system structure
and the real measurement error compensation. We only
pay attention to the input data and output data, and
take the whole measurement system as a black-box to
perform the optimization.

The calibration based on the system configuration has
been deeply studied[4,11,12]. While our systematic cali-
bration method is based on real measurement error com-
pensation. A high-precision standard block is measured
and the measurement error is expressed by the system
parameters. Then the error is taken as the optimization
objective function to acquire high accurate system pa-
rameters.

Structured light measurement is a non-contact opti-
cal measurement method based on active triangulation
method. A projector projects high robustness time-space
coding light model, and the object space is divided into
numerous measurements regions with unique code. The
object’s coordinates can be computed using the trian-
gular geometric relation[4,13]. The specific schematic is
shown in Fig. 1. A 3D point pw = (xw, yw, zw) is trans-

formed into camera and projector pixel coordinates p′′
and p′, respectively. (uc, vc) of p′′ = (uc, vc, code) is the
camera pixel coordinate, (up, vp) of p′ = (up, vp, code)
is the projector pixel coordinate. (uc, vc) and (up) are
corresponded by the same “code”. So we can calculate
the object’s 3D coordinate by the following formulas ac-
cording to the principle of photogrammmetry[1]:

p′′(uc, vc) = T (Pw,Θccd, Θc), (1)

p′(up) = T (Pw, Θdmd,Θp), (2)

where Θc and Θccd are the camera’s extrinsic and in-
ternal parameters to be calibrated, Θp and Θdmd are
the projector’s extrinsic and internal parameters to be
calibrated, respectively.

In most conventional calibration methods, the sys-
tem calibration is divided into two separate procedures:

Fig. 1. System structure of 3D measurement. DMD: digital
micromirror device.
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Fig. 2. Code stripe images used for projector calibration.
(a) Stripe image affected by background; (b) stripe image
immune to background.

Fig. 3. Calibration images for the camera. (a) Calibration
features; (b) B/W image with red light illumination.

Fig. 4. Non-planar calibration model of system.

camera calibration and projector calibration. The cam-
era calibration is accomplished on the reference data
composed of the 3D reference points and their two-
dimensional (2D) pixel coordinates extracted from the
images. Unlike the camera calibration, the projector
calibration normally prepares the reference data by pro-
jecting an extra calibration pattern with known the 2D
references to the calibration artifact in different poses
and obtaining the 3D correspondences with the aid of
the calibrated camera[7−9]. In this way, the camera cal-
ibration error unavoidably affects the reliability of the
projector reference data and the accuracy of the pro-
jector calibration. This problem has been solved in our
previous work[14] which is the system parameter adjust-
ment based on the strong relation of system structure.
With our previous two-step calibration, we achieve a
precision of 0.06 mm. We find that this calibration pro-
cedure is an inverse procedure of the measurement. It is
just to minimize the sum of the re-projection error of all
the reference points onto the camera and the projector

image planes. We develop a novel method to minimize
the error of real measurement in this letter. We take this
method as the third step of system calibration. Since
the previous method is the basis of this letter, we first
describe it simply in the following parts.

Four of the most frequently used methods for evalu-
ating the system calibration accuracy are adopted. The
signs of the evaluation method of calibration accuracy
are given below, for which the details can refer to the
literatures[7,9,15]: the error of distorted pixel coordinates
(EDI); the error of undistorted pixel coordinates (EUDI);
the distance with respect to the optical ray (EORD); and
the normalized calibration error (NCE).

In the structured light system, the projector cannot
capture the image as the camera, so the projector image
coordinates are acquired through the stripe images which
are captured by camera. The following is a description
of the problem in detail when the projector is calibrated.
Firstly, the calibration plate image is captured to cali-
brate the camera. In order to obtain the same point’s
image pixel coordinate in the projector, the calibration
plate is located, and the code stripes are projected on it.
Then an array (uci, vci, codei) is acquired, where (uci, vci)
denotes the image pixel coordinates, and codei is a code
of this point. However, we find that the coding images
are confused by background image (circle point image)
used for camera calibration. This confusion phenomenon
illustrated in Fig. 2(a) could seriously affect the decod-
ing and the accuracy of the projector calibration.

Zhang et al. described a novel method to solve this
problem[11]. It takes advantage of the nature of optical
to solve this problem. As we know, the responses of the
black/white (B/W) camera to red and blue colors are
similar, the B/W camera can only see a uniform board
(in the ideal case) if the calibration plate is illuminated
by white light, as illustrated in Fig. 2(b). So when we
calibrate the camera, the blue and red calibration plate
illustrated in Fig. 3(a) is illuminated with red light, a
good contrast gray image is acquired, as illustrated in
Fig. 3(b). Then when we calibrate the projector, the
calibration plate is illuminated with white light, and the
stripe image immune to background is acquired, as illus-
trated in Fig. 2(b).

In this system, the camera is calibrated firstly. For
the calibration plate shown in Fig. 3(a), there are 11×12
calibration points with known 3D coordinates. The plate
can be shifted to different preset locations along the ob-
ject known z-axis to form a non-planar measurement
space, as shown in Fig. 4. We use the image coordinates
(uci, vci) captured by the camera and the known the

Fig. 5. System calibration accuracy after the first step cali-
bration. (a) Calibration accuracy of camera; (b) calibration
accuracy of projector.
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Fig. 6. Calibration procedure of system for identifying rigid-
ity transformation.

Fig. 7. Calibration accuracy of (a) camera and (b) projector
with previous method; calibration accuracy of (c) camera and
(d) projector with improved method.

3D coordinates to calibrate the camera.
Our calibration algorithm is based on Tsai’s multi-

plane calibration method[7] with some aspects improved.
Firstly, some points near the principal point, which are
distortion minimum points, are used to estimate the
initial value using the linear least squares algorithm.
Secondly, the distortion factors including radial and
decentering distortions are introduced. Thirdly, we
use nonlinear optimization Levenberg-Marquardt (L-M)
algorithm[16] to optimize the overall system and overcome
the disadvantages of the traditional local optimization
algorithm. We use the same algorithm to calibrate the

projector. There is a little difference from the camera
calibration, because the stripes projected by projector
are one-dimensional (1D) coordinates. After the first
step calibration of the system, we get the calibration re-
sults. The calibration errors of the camera and projector
of 10 tests are shown in Fig. 5. Figure 5(a) shows the
camera calibration error: EDI and EUDI are about 0.40
pixels, EORD is about 0.18 mm, NCE is about 0.90.
Figure 5(b) shows the projector calibration error: EDI
and EUDI are about 0.45 pixels, EORD is about 0.22
mm, and NCE is about 1.10. We can see that the accu-
racy is low, so further calibration is needed.

According to the specific characteristics of the struc-
tured light system, we find that both devices (camera
and projector) are viewing the object scene at the same
time, the image information of both devices’ calibration
is acquired by the single camera, so it is possible to use
a unique device coordinate system[4], and to apply only
one transformation from the object coordinate system to
the device coordinate system and relate both devices by
a rigid transformation. We take the results of the first
step as the initial estimation of the second step calibra-
tion and optimize the objective function shown at the
bottom of Fig. 6. Figure 6 is a brief flow chart of our new
two-step system calibration algorithm[14]. The strong re-
lation between both devices’ coordinates ensures a more
precise conversion from the phase to 3D coordinates.
The advantage of this optimization function, in com-
parison with other structured light system approaches,
is the simultaneous estimation of the parameters using
the unique coordinate as a rigidity constraint. This con-
straint bounds the solution space, reducing the risk of
erroneous estimations. So after this optimization, the
measurement accuracy has been significantly improved,
as shown in Fig. 7.

After the second nonlinear minimization with the L-M
optimization method, we acquire the better system pa-
rameters. However, due to the large number of unknowns
and the ill conditioning of the problem, the search for
the global minimum may be difficult and trapped in a
local minimum. In addition, the optimization objective
functions are only based on the 2D image pixel error
computed from 3D coordinates, such as EDI and EUDI.
The actual measurement process is the reverse of the pro-
cess. So it is essential to compensate the nonlinear 3D
error of the conversion from the 2D images into 3D co-
ordinates. In this measurement system, we measure the
standard block and use the measurement error to com-
pensate the partial parameters of the system. Figure 8(a)
is the standard block, with each of the distance between

Fig. 8. Measurement of standard guage block. (a) Standard
guage block image; (b) measurement point cloud of the block.
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Fig. 9. Re-projection error of the reference points on camera
image planes by (a) previous method (mean: 0.2334 pixels;
standard deviation: 0.1141 pixels) and (b) improved method
(mean: 0.1204 pixels; standard deviation: 0.0760 pixels).

two faces of d0 = 2.5±0.002 mm, and Fig. 8(b) is the
measurement point cloud with our measurement system.

The third step calibration is the improved procedure
of system calibration. At first, we select a lot of points
Q (q1, q2, · · · , qm) from face 1 of the measurement point
cloud in Fig. 8(b) and fit a plane equation f(Q); then,
many points P (p1, p2, · · · , pn) uniform sampled from
face 2 are used to calculate the distance from every point
of P to the plane f(Q); thirdly, we get the average dis-

tance from face 2 to face 1: d1 = 1
n

n∑
i=1

g(P (pi), f(x, y, z)).

Same as above, we take the distances from face 1 to face
2 as d2; at last, we have the distance dc = (d1 + d2)/2 as
the final real measurement value. The difference of the
measurement value dc and true value d0 is the absolute
measurement error Derror given by

Derror = ||d0 −
{

1
n

n∑

i=1

g[P (pi), fq(x, y, z)]

+
1
m

m∑

j=1

g[Q(qj), fp(x, y, z)]

}
/2||2, (3)

where p(x, y, z), q(x, y, z) = f(Θdmd, Θccd, Θk) (k = 1,
2, · · · , N) are measured coordinates of the standard
block, and ϕ = [Θccd, Θdmd,Θ1,Θ2, · · · , ΘN ] are the sys-
tem parameters to be adjusted. The L-M optimization
algorithm[16] is used to optimize the objective function
Derror, and the best parameters of the entire system are
acquired.

We find that the experiment results are not very good
and may be wrong if all the parameters of the system are
optimized. The reason is that our mathematical model
is based on single component function and the system
function is not an implicit equation. So, we use the
method proposed in Ref. [9] to perform the optimiza-
tion. Firstly, we fix the initial estimation value focal
f and center pixel (u0, v0), minimize function Derror,
and optimize the other system parameters. Then, with
the other system parameters fixed as current estimate,
we optimize the focal f and center pixels (u0, v0), such
that a cycle is established. At last, the procedure ter-
minates unless a certain number of iterations have been
performed. Then we obtain the best system parameters.

In order to evaluate the performance improvement, we
calibrate the system with the previous method and the
new algorithm, respectively. Figures 7(a) and (b) are
calibration accuracy of camera and projector with the

previous method. For example, the camera calibration
errors of EDI, EUDI, EORD, and NCE are about 0.2
pixels, 0.2 pixels, 0.1 mm, and 0.6, respectively. With
the new improvement of calibration algorithm, we get
an improved calibration precision as shown in Figs. 7(c)
and (d): EDI and EUDI are about 0.1 pixels, EORD is
about 0.04 mm, and NCE is about 0.2. The calibration
accuracy has been greatly improved by minimizing the
3D measurement error.

In order to clearly display the advantages of the im-
proved algorithm, we show the re-projection calibra-
tion error calculated with our proposed new method
and previous method. Figures 9(a) and (b) show the
re-projection error of the reference point onto camera
image planes. The re-projection error of the camera is
0.1204±0.0760 pixels, which is almost 1/2 smaller than
that of the previous error (0.2334±0.1141 pixels). This
indicates that our improved method is better than the
previous method.

Compared with the first two steps, we find that the
3D errors EORD and NCE have been largely reduced
with our new algorithm. Figures 10(a) and (b) show the
results of NCE error created by the previous method and
our improved method. The error shown in Fig. 10(a)
is 0.6269, which is much bigger than that of our new
method of 0.1818. This is due to the fact that the third

Fig. 10. NCE error of the reference points by (a) previous
method (0.6269) and (b) improved method (0.1818).

Fig. 11. Experimental results of gauge block. (a) Image of 3D
reconstruction of gauge block; (b) fitting distance result of the
measurement; (c) fitting flatness result of the measurement.
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step calibration focuses on the reduction of nonlinear
measurement error in the real measurement environment.

In order to prove the feasibility and precision of our im-
proved calibration algorithm, we measured a gauge us-
ing our measurement system calibrated with our new
method, and compared the result with the measure-
ment result of coordinate measurement machine (CCM).
The charge-coupled device (CCD) camera in our sys-
tem is AM1300 made in JIAHENGZHONGZI company,
the resolution is 1280 × 1024 pixels. The projector is
NEC50+. The measurement range of our system is about
200 × 150 × 30 (mm) which is computed according to
the components’ view range and depth of field. Each of
the distances between two faces of the standard gauge is
2.5000 mm. The flatness of the gauge surface is 0.0002.
Firstly, the gauge block was measured by an industrial
CMM, the distances between faces 1 and 2, faces 2 and
3 were 2.4984 and 2.5003 mm, respectively. The flatness
of face 1 was measured to be 0.0017. Then, the stan-
dard gauge was measured by our system. The results
are shown in Fig. 11(a). The data measured were fitted
by reverse software, the distances between faces 1 and
2, faces 2 and 3 were 2.462 and 2.531 mm, respectively,
as shown in Fig. 11(b), the flatness was about 0.02, as
shown in Fig. 11(c). It can be seen that our measure-
ment results and the results of CMM are in the same
level. And our new calibration precision of 0.03 mm has
a sizeable improvement of 50% than the previous preci-
sion of 0.06 mm. Verified with the experimental results,
the measurement accuracy of surface can be maintained
well within 1.5% of the overall measurement range with
the proposed system calibration method.

In conclusion, an accurate system calibration algorithm
is proposed for a camera-projector measurement system
based on structured light system. According to the op-
tical characteristic, we use a novel method to solve the
internal restrictive conditions of the structured light cal-
ibration and greatly improve the system accuracy. A
novel three-step calibration method is used to calibrate
the system and compensate the measurement error in real
environment. We simulate the real measurement process,
and the experimental results show that the new calibra-
tion algorithm greatly improves the system robustness of

high-precision calibration. In comparison with the two-
step method, about 40%−50% of the measurement error
can be effectively reduced when the proposed method is
applied, and the absolute measurement accuracy is about
0.03 mm.
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Doctoral Foundation of the Ministry of Education of
China (No. 20070287055).
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Eng. 43, 464 (2004).

7. R. Y. Tsai, IEEE J. Robotics Automat. 3, 323 (1987).
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